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Abstract—Microphone array techniques are widely used in
sound source localization and smart city acoustic-based traffic
monitoring, but these applications face significant challenges
due to the scarcity of labeled real-world traffic audio data
and the complexity and diversity of application scenarios. The
DCASE Challenge’s Task 10 focuses on using multi-channel
audio signals to count vehicles (cars or commercial vehicles)
and identify their directions (left-to-right or vice versa). In
this paper, we propose a graph-enhanced dual-stream feature
fusion network (GEDF-Net) for acoustic traffic monitoring, which
simultaneously considers vehicle type and direction to improve
detection. We propose a graph-enhanced dual-stream feature
fusion strategy which consists of a vehicle type feature extraction
(VTFE) branch, a vehicle direction feature extraction (VDFE)
branch, and a frame-level feature fusion module to combine
the type and direction feature for enhanced performance. A
pre-trained model (PANNs) is used in the VTFE branch to
mitigate data scarcity and enhance the type features, followed by
a graph attention mechanism to exploit temporal relationships
and highlight important audio events within these features.
The frame-level fusion of direction and type features enables
fine-grained feature representation, resulting in better detection
performance. Experiments demonstrate the effectiveness of our
proposed method. GEDF-Net is our submission that achieved 1st
place in the DCASE 2024 Challenge Task 10.

Index Terms—Acoustic-based traffic monitoring, transfer
learning, pre-trained model, graph attention, feature fusion

I. INTRODUCTION

Acoustic-based traffic monitoring uses roadway sounds to
estimate vehicle counts, speeds, and types, aiding in traffic
control and anomaly detection [1]–[4]. Typically, single sen-
sors are deployed along the roads to capture audio data for
estimating speeds [4] or counting vehicles [1]–[3]. While being
effective for speed estimation [4], single-sensor setups struggle
with vehicle direction detection due to limited spatial resolu-
tion and challenges in distinguishing overlapping signals from
multiple vehicles, which restricts the system’s ability for traffic
flow monitoring. To address these limitations, microphone
arrays are used to capture multi-channel signals from various
positions, enabling direction detection [5]–[8]. Configurations
include equidistant [6], orthogonal [7], and circular arrays

†These authors contributed equally to this work.
*Corresponding author.
This work was partly supported by the Natural Science Foundation of

Heilongjiang Province under Grant No. LH2022F010.

[8]. However, their effectiveness is often compromised by the
scarcity of labeled real-world traffic data.

To address these challenges, the Detection and Classification
of Acoustic Scenes and Events (DCASE) 2024 Challenge
introduces Task 10, Acoustic-based Traffic Monitoring [3], [9],
which focuses on detecting vehicle types (cars and commercial
vehicles) and travel directions (left-to-right or vice versa). Due
to the scarcity of real-world data, the Challenge incorporates
synthetic data to evaluate its impact on system performance
[9]. The Task 10 baseline [3], [10] uses a dual-branch CNN-
based network to extract vehicle direction and type features
from Generalized Cross-Correlation with Phase Transform
(GCC-PHAT) [11] and log-Mel spectrograms, which are fused
along the temporal dimension to detect vehicle events. To
mitigate data scarcity, the baseline and other top-performing
systems [12]–[16], including ours [17], all use pre-training
on synthetic data [9] followed by fine-tuning on limited real
data. The Top-3 system [13] improves the baseline by adding a
matching loss [18] to improve the alignment of the predictions
with ground truth, achieving slightly enhanced performance.

Other systems, such as Top-4 [14], Top-5 [15], and Top-6
[16], utilize CNN-based architectures like ResNet [19] (Top-4)
and VGG11 [20] (Top-6), with Top-5 also exploring ensemble
methods. However, these methods do not outperform the base-
line. A common limitation among these methods, including
Top-3 [13], is their limitation in capturing contextual rela-
tionships between audio events. In addition, while synthetic
data supports feature learning, it does not fully resolve data
scarcity and quality issues, limiting effective representation of
the vehicle audio events.

The Top-2 system [12] combines vehicle direction (GCC)
and type features (log-Mel spectrogram) along the temporal
dimension and employs a Transformer [21] for contextual
modeling. However, directly using concatenated features with-
out refinement can introduce redundancy and degrade perfor-
mance. Like above methods [3], [13]–[16], the Top-2 system
[12] also adopts synthetic data to improve feature learning,
which, however, can be limited by the quality of the data.

In this paper, we propose GEDF-Net, a graph-enhanced
dual-stream feature fusion network with a pre-trained model,
for acoustic-based traffic monitoring. The proposed GEDF-Net
consists of a graph-enhanced dual-stream feature extraction



Fig. 1. Overall framework of the proposed method. The proposed GEDF-Net includes a graph-enhanced dual-stream feature extraction (GEDF) module with
a vehicle type feature extraction (VTFE) branch and a vehicle direction feature extraction (VDFE) branch, a module for fusing type and direction features
over time frames, and a category count predictor for vehicle prediction.

(GDFE) module with a vehicle type feature extraction (VTFE)
branch and a vehicle direction feature extraction (VDFE)
branch for vehicle type feature and direction feature extraction,
respectively, together with a frame-level fusion module to fuse
the fine-grained features for enhanced vehicle detection.

Specifically, in the VTFE branch, we use a pre-trained
model (i.e. PANNs [22], pretrained on AudioSet [23]) to
improve feature representation. In addition, inspired by [24],
we incorporate a graph attention mechanism [25] to capture
temporal relationships between audio events, treating feature
frames from PANNs as nodes and their relationships as edges,
thereby enhancing vehicle type feature representation. The
VDFE branch extracts direction features using GCC-PHAT for
time delay estimation. Then, these features are integrated along
the corresponding time dimension and fused at the frame level
to obtain fine-grained representation for traffic monitoring.
Finally, a category count predictor counts vehicles by type
and direction (e.g., cars or commercial vehicles moving left-
to-right or right-to-left). Experiments are conducted on the
DCASE 2024 Challenge Task 10 dataset [10] to demonstrate
the effectiveness of the proposed method, which achieved 1st
place in DCASE Challenge.

II. PROPOSED METHOD

Our proposed GEDF-Net, shown in Figure 1, contains a
dual-stream feature extraction module including two branches,
namely, the VTFE branch for extracting vehicle type features
and the VDFE branch for extracting direction features, to-
gether with a module to combine these features in frame-level
for fine-grained representation and a category count predictor
to estimate the number of vehicles in each category.

A. Graph-Enhanced Dual-Stream Feature Extraction Module

The GEDF module is used to extract the type and direction
features, both from the four-channel audio, detailed as follows.

1) Vehicle Type Feature Extraction Branch: Inspired by
[24], the VTFE branch enhances the vehicle type feature
representation by using a pre-trained model to address data
scarcity and a graph attention mechanism to capture temporal
relationships and emphasize important audio events for finer
representation.
Feature Enhancement with Pre-trained Model: We use
a pre-trained model (i.e., PANNs [22]) to extract vehicle

type features. Since PANNs is trained on AudioSet [23],
which includes vehicle data, it enhances vehicle type feature
representation and helps address data scarcity by incorporating
external knowledge.

To achieve this, we first convert the input four-channel
raw audio signals S = {s1, s2, s3, s4} ∈ R4×L to log-
Mel spectrogram X ∈ R4×B×T via a log-Mel spectrogram
conversion operation, where L, B, and T represent the number
of sampling points, mel bins, and time frames, respectively.

Then, a convolution layer, i.e., Conv(·), is applied to
compress the four-channel log-Mel spectrogram X into 1-D
expression X ∈ R1×B×T , as follows,

X = Conv(X), (1)

After this, a pre-trained model (i.e., PANNs [22]) is utilized
to enhance the feature representation, mitigating the data
scarcity for vehicle type feature extraction, as follows,

H = PANNs(X), (2)

where H = {h1, . . . ,hn, . . . ,hN} ∈ RK×N denotes the
enhanced feature, and hn ∈ RK×1 is the n-th feature frame.
K and N are the dimension of the feature at each frame and
the number of time frames, respectively.
Fine-grained Feature Representation with Graph Atten-
tion: Since vehicle audio events usually span multiple time
frames, and feature frames of the same vehicle type should
have higher correlations. To capture these contextual associa-
tions, we use audio feature graph modeling with an attention
mechanism to emphasize key audio events related to vehicle
traveling, achieving finer vehicle type feature representation.

Let hi and hj be the feature frames (nodes) in H . The
correlation between these frames is represented by the weight
aij (attention coefficient) of the edge between hi and hj ,
calculated by a learnable linear mapping, following [24] [25],

aij = Softmax(LeakyReLU
(
e⊤[Mhi∥Mhj ]

)
), (3)

where M ∈ RK×K is the learnable linear mapping, and
e ∈ R2K×1 is the learnable attention vector. ∥ denotes
concatenation operation.

We can then obtain an adjacency graph A ∈ RN×N from
H , with its element aij at i-th row and j-th column to
represent the relation between feature nodes hi and hj . Then,



by aggregating the feature nodes of A, we can obtain the
improved type feature representation ZT ∈ RK×N as follows,

ZT = AHM⊤ +H, (4)

2) Vehicle Direction Feature Extraction Branch: We also
adopt GCC-PHAT for direction feature extraction in the VDEF
branch following [3]. In addition, an average pooling operation
is introduced to further explore important directional informa-
tion, facilitating the fusion of the vehicle type feature and
direction feature over time dimension.

Specifically, the short-time Fourier transform (STFT) is
employed to obtain the phase Pc ∈ RF×T and Pk ∈ RF×T

of audio signals for each channel pair c and k, where
{(c, k) | c, k ∈ {1, 2, 3, 4}, and c ̸= k}. F denotes the number
of frequency bins. Then, the time delay Dc,k ∈ RQ×T of
the audio signals for each channel pair can be calculated as
follows,

Dc,k = F−1(exp(j · Angle(Pc ⊙ P ∗
k ))), (5)

where ∗ denotes the conjugate operation, ⊙ represents
element-wise multiplication, and Angle(·) computes the phase
angle. F−1(·) stands for the inverse Fourier transform. Here,
Q is the number of GCC-PHAT coefficients calculated from
the two signals. Thus, the time delay estimation for all the
four-channel audio signals can be represented as D = {Dc,k |
c, k ∈ {1, 2, 3, 4}, and c ̸= k}.

Finally, the direction feature representation ZD ∈ RK×N

can be obtained via a convolutional encoder (i.e., Φ(·)) and
an MLP (i.e., Θ(·)) with the time delay estimation as,

ZD = AvgPool(Φ(Θ(D))), (6)

where AvgPool(·) denotes the average pooling operation.

B. Frame-level Feature Fusion Module

After extracting the vehicle type and direction features, we
use a module to combine these features over each time frame
to obtain a fine-grained representation accounting for both
vehicle type and direction as follows,

zTD = GRU(Θ([ZT ∥ ZD])), (7)

where GRU(·) denotes the gated recurrent unit (GRU) [26],
and zTD ∈ R1×d is the last time step result of GRU for
regressing the vehicle count, and d denotes the dimension of
the result for each time frame.

C. Category Count Predictor

A linear layer is utilized as the category count predictor to
estimate the counts for each category of vehicle event across
vehicle type (i.e., car and commercial vehicle) and travel
direction (i.e., left to right and right to left), as follows,

y = ReLU(WzTD + b), (8)

where y ∈ R1×4 is the prediction result for acoustic traffic
monitoring, and W and b are the weight matrix and bias of
the predictor, respectively.

TABLE I
METADATA SUMMARY FOR EACH LOCATION.

location loc1 loc2 loc3 loc4 loc5 loc6

number of audio samples 1256 56 4129 17 96 1740
max-pass-by-speed 100 50 50 50 40 90
max-traffic-density (per minute) 1000 900 500 400 140 900
number of vehicle audio events 11515 901 21685 63 165 19116

III. EXPERIMENTS AND RESULTS

A. Experimental Setup

1) Dataset: Since the official evaluation set is not available,
we evaluated performance on the DCASE 2024 Challenge
Task 10 development dataset [10], which includes four au-
dio event types (“car left”, “car right”, “cv left”, “cv right”)
from six locations (loc1 to loc6) and synthetic data generated
by an acoustic traffic simulator [3], [9]. Real data were
recorded using a linear microphone array parallel to traffic
flow. Sample counts per location are in Table I. Similar to
the baseline method, synthetic data are also included in our
training process.

2) Evaluation Metrics: Following the official baseline [3],
we use Kendall’s Tau Rank Correlation (Kendall’s Tau Corr)
and Root Mean Square Error (RMSE) as evaluation metrics.
Kendall’s Tau Corr measures the ordinal association between
predictions and actual results, while RMSE quantifies predic-
tion errors. We also use a third metric, Ranking Score, as
defined in the official Task 10 evaluation.

The Ranking Score evaluates systems based on average
rankings across 6 × 4 × 2 comparisons: 6 locations (loc1 to
loc6), 4 audio event types (“car left,” “car right,” “cv left,”
“cv right”), and 2 metrics (Kendall’s Tau Corr and RMSE).
Each comparison is assigned a ranking score, with Rank 1
being the best and Rank N the worst. The final performance
is the average of all rankings, where a lower score indicates
better performance.

B. Effectiveness Validation and Analysis

We conduct ablation experiments on the development set
to validate the effectiveness of our proposed GEDF-Net. We
compare the full method with two variants: GEDF-Net without
PANNs (w/o -P) and without graph attention (w/o -G), along
with the baseline [3], [10]. Results are in Table II.

All our methods outperform the baseline, with GEDF-Net
achieving the best ranking score, demonstrating its effective-
ness in using pre-trained models for feature enhancement and
graph attention for detailed feature representation. GEDF-Net
significantly outperforms GEDF-Net (w/o -P) in locations with
very few samples (e.g., loc2 with 56 samples and loc4 with
17 samples), highlighting the value of external knowledge in
mitigating data scarcity.

In loc5, the traffic scenario is relatively simple, as char-
acterized by low maximum traffic density (140 vehicles per
minute) and low maximum pass-by speed (40 km/h). With a
limited number of samples, GEDF-Net (w/o -P) still achieves
comparable results to GEDF-Net.

Meanwhile, GEDF-Net outperforms GEDF-Net (w/o -G),
showing the benefits of using graph attention modeling to



TABLE II
EFFECTIVENESS VALIDATION OF OUR PROPOSED GEDF-NET ON DCASE 2024 CHALLENGE TASK 10 DEVELOPMENT DATASET, WHERE KENDALL’S

TAU RANK CORR (KENDALL), RMSE AND RANKING SCORE ARE USED FOR EVALUATION. NOTE THAT, THE RANKING SCORE REFLECTS RESULTS THAT
ARE ONLY BASED ON COMPARISONS AMONG THE METHODS LISTED IN THIS TABLE.

Methods Category loc1 loc2 loc3 loc4 loc5 loc6 Ranking Score
Kendall RMSE Kendall RMSE Kendall RMSE Kendall RMSE Kendall RMSE Kendall RMSE

Baseline

car left 0.445 2.555 0.579 3.074 0.543 1.731 0.195 1.997 0.575 0.693 0.804 1.628

2.71car right 0.423 2.978 0.337 2.917 0.569 1.294 0.038 1.674 0.371 0.693 0.700 1.822
cv left 0.084 0.918 0.044 0.813 0.034 0.309 0.000 0.655 0.068 0.362 0.763 0.509

cv right 0.076 0.882 0.051 0.604 0.322 0.212 0.000 0.463 0.257 0.252 0.641 0.530

GEDF-Net (w/o -P)

car left 0.410 2.654 0.630 2.510 0.555 1.716 0.049 2.295 0.582 0.629 0.805 1.646

2.52car right 0.440 2.920 0.516 2.239 0.572 1.281 -0.063 2.882 0.394 0.679 0.704 1.810
cv left 0.176 0.909 -0.034 0.850 0.174 0.307 0.000 0.655 0.045 0.351 0.690 0.601

cv right 0.117 0.937 -0.051 0.717 0.299 0.212 0.000 0.463 0.361 0.238 0.521 0.648

GEDF-Net (w/o -G)

car left 0.393 2.765 0.700 2.157 0.548 1.724 0.634 1.174 0.525 0.745 0.811 1.549

2.58car right 0.441 2.970 0.474 2.544 0.575 1.289 0.341 0.958 0.397 0.694 0.694 1.837
cv left 0.172 0.962 0.143 0.798 0.009 0.314 0.296 0.607 -0.047 0.361 0.743 0.582

cv right 0.126 0.954 0.058 0.726 -0.002 0.222 0.120 0.613 -0.083 0.300 0.611 0.576

GEDF-Net

car left 0.434 2.600 0.719 2.177 0.551 1.729 0.097 2.095 0.557 0.708 0.816 1.582

2.04car right 0.448 2.919 0.401 2.666 0.577 1.275 0.240 1.548 0.401 0.697 0.684 1.910
cv left 0.207 0.892 0.226 0.783 0.171 0.315 0.182 0.604 0.058 0.362 0.683 0.604

cv right 0.126 0.861 0.171 0.677 0.377 0.195 0.445 0.428 0.357 0.208 0.570 0.594

TABLE III
PERFORMANCE COMPARISON WITH TOP-RANKING SYSTEMS ON THE

DCASE 2024 CHALLENGE TASK 10 EVALUATION SET.
Methods Official Ranking Ranking Score

GEDF-Net (Ours) [17] 1 3.98
Bai JLESS task10 1 [12] 2 4.44
Takahashi TMU-NEE task10 1 [13] 3 4.77
Baseline Bosch task10 [10] - 5.17
Park KT task10 3 [14] 4 5.67
Betton-Ployon ACSTB task10 1 [15] 5 7.89
Cai NCUT task10 1 [16] 6 8.14

*Official ranking results of DCASE 2024 Challenge Task 10.

capture temporal relationships and highlight important audio
events in vehicle type features. However, at loc4, GEDF-Net
(w/o -G) performs better, likely due to the limited number of
audio events (63) at this location, which may limit the graph
attention model to learn robust representations.

C. Performance Comparison with the Top Ranking Systems

The evaluation set in DCASE 2024 Challenge Task 10
was not released to the public, and most top-ranking systems
were not open-sourced either. For this reason, we could not
reproduce their results for comparison. Instead, we present
the official evaluation results published by DCASE Challenge
organisers to showcase the advantages of our method. The
official ranking scores of the top systems are shown in Table
III, with detailed results available on the competition website1.

From Table III, it can be seen that our proposed GEDF-Net
as the submission system outperforms all other systems, which
shows the superiority of our proposed method, demonstrating
the effectiveness of using the pre-trained model to mitigate
the data scarcity and the graph attention to exploit temporal
relationships and highlight important audio events for acous-
tic traffic monitoring. Moreover, our method surpasses the
Transformer-based Top-2 system (i.e., Bai JLESS task10 1
[12]) that simply uses log-Mel spectrogram as type feature,
further illustrating the effectiveness of graph-enhanced fine-
grained feature representation with the pre-trained model.

1https://dcase.community/challenge2024/task-acoustic-based-traffic-monit
oring-results

Fig. 2. Visualization of graph-enhanced vehicle type feature representation.
The top row shows the log-Mel spectrograms of two audio samples, while
the bottom row shows the learned corresponding linear interpolation adjacency
graphs, with red boxes denoting the attention highlighted vehicle travel events.

D. Visualization Analysis

To demonstrate that our graph-enhanced fined-grained fea-
ture representation can capture the contextual association and
highlight the important audio events related to vehicle travel-
ing, we visualize the linear interpolation adjacency graphs of
the learned vehicle type feature in Figure 2, where we can see
the vehicle travel events (i.e., feature nodes) are highlighted
in the interpolation adjacency graphs as indicated in the red
box areas. The results further validate the effectiveness of our
proposed method.

IV. CONCLUSION

In this paper, we have presented a graph-enhanced dual-
stream feature fusion network with a pre-trained model for
acoustic traffic monitoring, where both vehicle type and
direction are taken into account for feature representation.
Specifically, a pre-trained model is introduced to mitigate the
data scarcity for feature enhancement and graph attention is
leveraged for finer type feature representation. Experimental
results demonstrate the effectiveness of our proposed method.
By fusing fine-grained vehicle type feature and direction fea-
ture, our method achieved 1st place in DCASE 2024 Challenge
Task 10.



REFERENCES
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